数据科学家最耗费时间的工作是什么?调查发现,三分之二的分析人员认为清理和组织数据是他们最费时的工作,52%称他们最大的障碍是数据质量差。
数据分析师花费一半以上的时间清理和转换数据,而不是从中提取商业智能。数据储存的规模不断增大,数据类型也在激增。新一代的工具蜂拥而至,并承诺把复杂的工具送到不依赖数据的学家的手上。
技术领域最热门的职位之一是数据科学家,或许只有最新出现的首席高管职位:首席数据科学家能超越他们。显而易见,人们对这种趋势一直存在质疑,来自美国科技网站InfoWorld的 Yves de Montcheuil曾引用过一则笑话,数据学家就是住在加利福尼亚州的商业分析师。
每个公司都需要把公司的数据转换为商业智能,这并不是什么有趣的事,这就是数据科学家承担主导责任的时候。但随着数据数量和种类的激增,数据科学家发现,他们大部分的时间都花费在清理和转换数据,而不是分析数据,并把它们告诉给企业经理。
最近,IT项目众包公司CrowdFlower的数据科学家进行了一项调查(需要注册可查看)。调查发现,三分之二的分析人员认为清理和组织数据是他们最费时的工作,52%称他们最大的障碍是数据质量差。受访者说出了在它们工作中使用的48种不同的技术,最受欢迎的是Excel(55.6%),其次是开源语言研究(43.1%),和Tableau数据可视化软件(26.1%)。
数据科学家认为它们最大的挑战是清理数据花费时间,数据质量差,缺少分析时间,以及无效的数据建模。
是什么抑制了数据分析的发展?被调查的数据科学家列举出,包括缺少有效满足他们工作需要的工具(54.3%),组织没有清楚地说明目标和宗旨(52.3%),以及培训投资不足(47.7%)。
来源:CrowdFlower
更多阅读: