199IT讯 自2006年业务上线,12年来AWS一骑绝尘,甩开微软和谷歌,在IaaS(Infrastructure as a Service基础设施即服务)行当成为当之无愧的大哥。同时在云存储、组网、计算、数据库等方面,AWS也已成为行业领导者。
据亚马逊AWS全球副总裁、大中华区执行董事容永康给出的数据,AWS 2018年第二季度的营业额已经增加到61亿美金,同比增长49%,年化收入预计超过240亿美元。数百万活跃客户大部分都是企业客户,分布全球190多个国家。
(图:亚马逊AWS全球副总裁、大中华区执行董事容永康 来源:199IT)
也许在旁人看来,AWS的确可以高枕无忧了。自有亚马逊的电商业务,视频行业Netflix和Prime视频等标杆客户已经让AWS极具想象空间。当然,AWS并不想止步于此。
无人机物流配送、Amazon Go 无人商店、智能音箱Echo等等这些新奇好玩的商业创新背后,AWS功劳居功至伟。
(图:亚马逊首席技术执行官沃纳·威格尔(erner Vogels) 来源:199IT)
亚马逊首席技术执行官沃纳·威格尔(Werner Vogels) 称,大概12年之前,AWS深知云将给软件开发带来翻天覆地的变化,大家都需要全新的工具。而AWS希望与软件开发者密切合作,打造出一个现代化的软件开发框架。因此,AWS不会给开发者一个预制好的房子,而是给开发者一个巨大的工具箱,在里面开发者可以挑选需要的工具,从而开发自己的软件。
时过境迁,在人工智能时代,AWS同样延续这一发展思路。AWS希望将机器学习的能力交付给每一位开发人员与数据科学家。
沃纳·威格尔(Werner Vogels)非常自豪于AWS上过去一年机器学习的使用井喷,达到250%的增长率,“而且在全球AWS平台之上,可以说全球这种机器学习的工作负载十个就有八个是在AWS平台之上运行的。如果要推动机器学习的普及化的使用,我们就需要做一些改进。因为机器学习需要全新的堆栈。”
目前,AWS上有框架、TensorFlow、Caffe等等,在此之上,AWS打造了一个叫SageMaker的平台,让每一位开发人员都能够通过算法获得机器学习的能力,如果只是用预制的模型,AWS提供有各种各样的服务。
沃纳·威格尔(Werner Vogels) 介绍称:“我们再来看一下机器学习的流程,首先要选择数据、挑选算法,然后做培训。培训就是要调整算法的参数,直到你获得的输出能够达到足够的准确度,就是达到你设定的门槛值。然后你把这个输出的模型进行部署,把它部署在多个可用区上,让模型可用。所有的这些组件我认为都是属于一些繁杂的工作。其实和机器学习本身并没有太多关系,80%的你做的工作都是一些所谓的没有差分性的苦活、累活。所以我们想把这个转过来,80%你们的工作应该是机器学习本身,而一点点只是那些繁杂的工作。SageMaker能够帮助你解决那些繁重的苦活累活。而你来选择任何你想用的算法,我们做一键式培训,你来选择要做算法测试的参数以及准确门槛值,输出的是模型,我们提供一键式模型部署,然后把它在多个AZ部署,这就是Amazon SageMaker的绝对革命式的机器学习普及化的平台服务。”
在过去6个月时间,AWS已经开发了机器学习方面100多个新的功能和新服务。就整体而言,2017年AWS推出的新的服务、新的功能,达到1400多项。单单在2018年第一季度已经推了大概400多个。
“AWS有数以万计的客户,在平台之上使用机器学习。比如在中国,我们有一家客户是开发无人车驾驶的,他们开发了一个非常复杂的,是用的Apache开源的框架来开发的,就是在AWS平台之上进行的技术开发。”据了解,自动驾驶公司图森未来、Monmenta等都在使用AWS的服务。
对于自动驾驶领域,虽然去年《华尔街日报》有传出亚马逊已经专门组建了一个团队,专注于无人驾驶技术,以帮助零售业在交通运输的变革中占据先机。
(图:AWS全球技术与开发者布道师团队负责人Ian Massingham 伊恩·马幸哈姆 来源:199IT)
但AWS全球技术与开发者布道师团队负责人Ian Massingham (伊恩·马幸哈姆)对199IT表示,“对于亚马逊或者AWS自身来说,我们绝对不会说自己来参与开发具体的自动驾驶的系统。因为我们是不会有非常可视性的所谓个人方面驾驶的数据的收集,我们也拿不到。但是我们有很多客户,比如图森,它在美国已经完成了250万英里的自动驾驶卡车的路测。同时我们和宝马等公司,为他们提供服务,帮助他们来开发自己的自动驾驶系统。
针对类似于像自动驾驶这样一些系统开发的需求来说,AWS提供一个大量数据输入、视频捕获、视频流传输的服务。“我们把它称之为Amazon Kinesis Video的服务,什么意思呢?我们可以把大量的视频流捕获,然后把它帮你们进行传输,并且把它打上时间码,你以后可以用注释应用来对它进行注释。同时还有一个Snowball的服务,它是可以以百态字节的体量,来帮助你传输大量的数据。其实不光是自动驾驶的开发,对于油气行业,对于很多其他的比如安全监控方面,都是一种非常好的数据传输的服务。”Ian Massingham (伊恩·马幸哈姆)介绍到。
在机器学习、人工智能甚至自动驾驶方面,AWS延续此前一贯思路,通过给开发者提供强大的工具库,通过自有的算法模型以及开源的算法模型,AWS正在抢占AI时代的战略高地,提供普及化的平台服务。
在全球化越来越热的机器学习、人工智能、自动驾驶的掘金浪潮之路上,AWS想做那个通盘赢家——卖水者。
更多阅读: